
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

1 Instructor: Daniel Llamocca

Unit 2 – Special-Purpose Arithmetic Circuits and

Techniques

INTEGER/FIXED-POINT CIRCUITS

ADDITION/SUBTRACTION

▪ Adder/Subtractor unit for two 𝑛 −bit signed numbers

Notice the extra Full Adder. This takes care of the sign-extension to make sure that the circuit does not generate overflow.

MULTI-OPERAND ADDITION

ACCUMULATOR
▪ Addition of 𝑁 𝑛 −bit numbers (signed):
▪ Note how the required number of bits grow to 𝑛 + ⌈log2𝑁⌉

ADDER TREE
▪ Unsigned numbers: no need to zero extend numbers, just use the carry out as the MSB of the result.
▪ Signed numbers: at every stage, we need to sign extend the operands, so as to get the proper result.
▪ Pipelining: Registers are used to increase the frequency of operation.

cn-1
FA

c0

s0

FA
c1

s1

FA
c2

s2

c3
FA

xn-1 yn-1

sn-1

cn ...cout

...

x2 y2 x1 y1 x0 y0

add/sub

add = 0
sub = 1

FA

sn

cn+1

xn-1 yn-1

QD

resetn

+
Dout

Din

E s
c
l
r

sclr

sign

extension

E

Q=0 if E=sclr=1

+++

++

+

X(0) X(1) X(2) X(3) X(4) X(5) X(6)

++

+

X(0) X(1) X(2) X(3)

N=7

N=4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

2 Instructor: Daniel Llamocca

MULTIPLICATION

UNSIGNED MULTIPLICATION
▪ Sequential algorithm:

P 0, Load A,B

while B 0
 if b0 = 1 then

 P P + A

 end if

 left shift A

 right shift B

end while

Example:

P 0, A 1111, B 1101

b0=1 P P + A = 1111. A 11110, B 110

b0=0 P P = 1111. A 111100, B 11

b0=1 P P + A = 1111 + 111100 = 1001011. A 1111000, B 1

b0=1 P P + A = 1001011 + 1111000 = 11000011. A 11110000, B 0

▪ Iterative Multiplier Architecture: FSM + Datapath circuit.
𝑠𝑐𝑙𝑟: synchronous clear. In this case, if 𝑠𝑐𝑙𝑟 = 1 and 𝐸 = 1, the register contents are initialized to 0.
The solution is computed in at most 𝑀 + 1 cycles.

1 1 1 1 x

1 1 0 1

1 1 1 1

0 0 0 0

1 1 1 1

1 1 1 1

1 1 0 0 0 0 1 1

P 0 + 1111

P 1111

P 1111 + 111100 = 1001011

P 1001011 + 1111000 = 11000011

A

din

s_l

E

0

L

E

Parallel Access

s_l = 1 Load

s_l = 0 Shift

N+M
resetn

B

din

s_l

E

0

L

E

DataB

M

z b0

+

P
E

sclr

EP

sclrP

FSM

s

done

s
c
l
r
P

z

b0

E
PE L

Shift-rightShift-left

S1

S2

resetn=0

1

0
s

z

sclrP 1

EP 1

E 1

01

EP 1

1

0
b0

S3

done 1

1
s

0

L, E 1

N+M

N+M

N+M

M

DataA
N

00..0

"00..0"&DataA

M

P

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

3 Instructor: Daniel Llamocca

Example (timing diagram):

SIGNED MULTIPLICATION
▪ Based on the iterative unsigned multiplier:

N

+/- +/-

N

0 A

M

+/- +/-

M

0 B

ITERATIVE
MULTIPLIER

N M

N+M

+/- +/-

N+M

0

AN-1 BM-1

BM-1AN-1

Q

s

N+M

doneP

E D

clock

resetn

s

DB 11011111

DA 11111111

S1 S1 S2 S2 S2 S2 S2 S3 S1 S1 S2 S2 S2 S2 S2 S3 S1

B

A 0F

z

0000 1E 3C 78 F0 E0

11110000 0000 0111 0011 0001 0000 0000

state

000000 0F 2D 69 E1P

done

L

E

E1

sclrP

EP

1101 0110 0011 0001 0000

0F 1E 3C 78 F0 E0

00 00 0F 0F 4B C3 C3 C3E1

0000 0000 0000 0000

E0 E0 E0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

4 Instructor: Daniel Llamocca

DIVISION

UNSIGNED DIVISION
▪ Unsigned division: Iterative case

For the implementation, we follow the hand-division method. We grab bits of A one by one and compare it with the divisor.
If the result is greater or equal than B, then we subtract B from it. On each iteration, we get one bit of 𝑄. The example
below shows the case where 𝐴 = 10001100; 𝐵 = 1001.

A: N=8 bits

B: M=4 bits

R: M=4 bits

Intermediate subtraction
requires M+1 bits

Q: N=8 bits

A 10001100, B 1001, R 00000000

i = 7, a7 = 1: R 00001 < 1001 q7 = 0

i = 6, a6 = 0: R 00010 < 1001 q6 = 0

i = 5, a5 = 0: R 00100 < 1001 q5 = 0

i = 4, a4 = 0: R 01000 < 1001 q4 = 0

i = 3, a3 = 1: R 10001 1001 q3 = 1, R 10001 – 1001 = 01000

i = 2, a2 = 1: R 10001 1001 q2 = 1, R 10001 – 1001 = 01000

i = 1, a1 = 0: R 10000 1001 q1 = 1, R 10000 – 1001 = 00111

i = 0, a0 = 0: R 01110 1001 q0 = 1, R 01110 – 1001 = 00101

 Q 00001111, R 0101

▪ An iterative architecture is depicted in the figure for A with 𝑁 bits and B with 𝑀 bits, 𝑁 ≥ 𝑀. The register 𝑅 stores the

remainder. At every clock cycle, we either: i) shift in the next bit of A, or ii) shift in the next bit of A and subtract B.
▪ (𝑀 + 1)-bit unsigned subtractor: We can apply 2C operation to B. If the subtraction is negative, 𝑐𝑜𝑢𝑡 = 0. If the subtraction

is positive, 𝑐𝑜𝑢𝑡 = 1 (here, we only need to capture 𝑅 with 𝑀 bits). This determines 𝑞𝑖, which is shifted into the register A,
which after 𝑁 cycles holds 𝑄.

00001111

10001100

1001

10001

1001

10000

1001

1110

1001

101

1001 AB

Q

R

ALGORITHM

R = 0

for i = N-1 downto 0

left shift R (input = ai)

if R B

qi = 1, R R-B

else

qi = 0

end

end

15

140

90

50

45

5

9 AB

Q

R

aN-1

M+1

LEFT SHIFT

REGISTER

s_L
E w REGISTER

E

DA DB

+cout

Q

B

LEFT SHIFT

REGISTER

sclr
s_L
E

w

MN

M

M+1

0&B

R

M

A

aN-1

M+1

0

M

R
M
-
1
R
M
-
2
.
.
.
R
0
a
N
-
1

RM-1RM-2...R0

E

FSM

sclrR
LR
ER

done

LA
B

E
A

MN

cout

cout

M

Y

sclrR 1, ER1

C 0

S1

1

resetn=0

E
0

ER 1, EA 1

S2

done 1

S3

1
cout

0

0
C=N-1 C C+1

1

LAB, EA 1

LR 1

E
10

clock

resetn

TMTM-1...T0

cin 1

TM-1...T0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

5 Instructor: Daniel Llamocca

Example (timing diagram 𝑁 = 5,𝑀 = 4). i) DA = 27, DB = 9, ii) DA = 20, DB = 7

SIGNED DIVISION
▪ Based on the iterative unsigned divider

✓ Signed division: In this case, we first take the absolute value of the operators A and B. Depending on the sign of these
operators, the division result (positive) of abs(A)/abs(B) might require a sign change.

clock

resetn

EA

EC

QC

zC

cout

LR

ER

state

done

E

Q

DB 01111001 0011

00000

R 0000

DA 1010011011 00000

000

T 00000

00000 11011 10110 01100 11000 10001 00011

000

S1 S1 S2

000

S2

001 010 011 100

S2 S2 S2 S3 S1 S1

100 100 000 000

S2 S2

001 010 011 100

S2 S2 S2 S3

100

S1

100

0000 0000 0001 0011 0110 0100 0000

101110000000000 11000 11010 11101 00100

00011

0000

10111

00011

0000

10111

0000

10100

11010

01000

0001

11011

10000

0010

11110

00000

0101

00011

00001

0011

11111

00010

0110

00101

00010

0110

00101

N

+/- +/-

N

0 A

M

+/- +/-

M

0 B

ITERATIVE
DIVIDER

N M

N

+/- +/-

N

0

AN-1 BM-1

BM-1AN-1

Q

s

N

doneP

E D

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

6 Instructor: Daniel Llamocca

FLOATING POINT CIRCUITS

FLOATING POINT ADDER/SUBTRACTOR

▪ 𝑒1, 𝑒2: biased exponents. Note that |𝑒1 − 𝑒2| is equal to the subtraction of the unbiased exponents.

▪ U_ABS_SIGN: This block computes |𝑒1 − 𝑒2|. It also generates the signal 𝑠𝑚.
𝑒1, 𝑒2 ∈ [0, 2

𝐸 − 1] → 𝑒1 − 𝑒2 ∈ [−(2
𝐸 − 1), 2𝐸 − 1], |𝑒1 − 𝑒2| ∈ [0, 2

𝐸 − 1] .
✓ 𝑒1 ≥ 𝑒2 → 𝑠𝑚 = 0, 𝑒𝑝 = 𝑒1, 𝑓𝑥 = 𝑓2, 𝑓𝑦 = 𝑓1, 𝑏𝑥 = 𝑏2, 𝑏𝑦 = 𝑏1

✓ 𝑒1 < 𝑒2 → 𝑠𝑚 = 1, 𝑒𝑝 = 𝑒2, 𝑓𝑥 = 𝑓1, 𝑓𝑦 = 𝑓2, 𝑏𝑥 = 𝑏1, 𝑏𝑦 = 𝑏2

▪ Denormal numbers: They occur if 𝑒1 = 0 or 𝑒2 = 0:

✓ 𝑒1 = 0 → 𝑏1 = 0. 𝑒1 ≠ 0 → 𝑏1 = 1. ✓ 𝑒2 = 0 → 𝑏2 = 0. 𝑒2 ≠ 0 → 𝑏2 = 1.

▪ SWAP blocks: In floating point addition/subtraction, we usually require alignment shift: one operator (called 𝑠𝑥) is divided

by 2|𝑒1−𝑒2|, while the other (called 𝑠𝑦) is not divided.

o First SWAP block: It generates 𝑠𝑥 and 𝑠𝑦 out of 𝑠1 and 𝑠2. That way we only feed 𝑠𝑥 to the barrel shifter.

o Second SWAP block: We execute 𝐴 ± 𝐵. For proper subtraction, we must have the minuend 𝑡1 (either 𝑠1 or
𝑠1

2|𝑒1−𝑒2|
) on

the left hand side, and the subtrahend 𝑡2 (either 𝑠2 or
𝑠2

2|𝑒1−𝑒2|
) on the right hand side. This blocks generates 𝑡1 and 𝑡2.

 𝑠𝑚 𝑒𝑝 𝑠𝑥 𝑠𝑦 𝑡1 𝑡2

𝑒1 ≥ 𝑒2 0 𝑒1 𝑠2 = 𝑏2. 𝑓2 𝑠1 = 𝑏1. 𝑓1 𝑠1
𝑠2

2|𝑒1−𝑒2|

𝑒1 < 𝑒2 1 𝑒2 𝑠1 = 𝑏1. 𝑓1 𝑠2 = 𝑏2. 𝑓2
𝑠1

2|𝑒1−𝑒2|
 𝑠2

▪ Barrel shifter 2-i: This circuit performs alignment of 𝑠𝑥, where we always shift to the right by |𝑒1 − 𝑒2| bits.

▪ SM to 2C: Sign and magnitude to 2’s complement converter. If the sign (sg1, sg2) is 0, then only a 0 is appended to the

MSB. If the sign is 1, we get the negative number in 2C representation. Output bit-width: 𝑃 + 2 bits.

▪ Main adder/subtractor: This circuit operates in 2C arithmetic. Note that we must sign-extend the (𝑃 + 2)-bit operands to

𝑃 + 3 bits.

Input operands [−2𝑃+1 + 1, 2𝑃+1 − 1], Output result [−2𝑃+2 + 2, 2𝑃+2 − 2].

▪ U_ABS block: It takes the absolute value of a number represented in 2C arithmetic. The output is provided as an unsigned

number. The absolute value [0, 2𝑃+2 − 2], this only requires 𝑃 + 2 bits in unsigned representation.

▪ Leading Zero Detector (LZD): This circuit outputs a number that indicates the amount of shifting required to normalize

the result of the main adder/subtractor. It is also used to adjust the exponent. This circuit is commonly implemented using
a priority encoder. 𝑟𝑒𝑠𝑢𝑙𝑡 ∈ [−1, 𝑝]. The result is provided as a sign and magnitude.

result output sign Actions

[0, 𝑝] 𝑠ℎ ∈ [0, 𝑝] 0
The barrel shifter needs to shift to the left by 𝑠ℎ bits.

Exponent adder/subtractor needs to subtract 𝑠ℎ from the exponent 𝑒𝑝.

−1 𝑠ℎ = 1 1
The barrel shifter needs to shift to the right by 1 bit.
Exponent adder/subtractor needs to add 1 to the exponent 𝑒𝑝.

▪ Exponent adder/subtractor: The figure is not detailed. This circuit operates in 2C arithmetic; as the input operands are

unsigned, we zero-extend to 𝐸 + 1 bits. Note that for ordinary numbers, 𝑒𝑝 ∈ [1, 2𝐸 − 2]. The (𝐸 + 1)-bit result (biased

exponent) cannot be negative: at most, we subtract 𝑝 from 𝑒𝑝, or add 1. Thus, we use the unsigned portion: 𝐸 bits (LSBs).

▪ Barrel shifter 2i: This performs normalization of the final summation. We shift to the left (from 0 to 𝑃 bits) or to the right

(1 bit). The normalization step might incur in truncation of the LSBs.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

7 Instructor: Daniel Llamocca

▪ This circuit works for ordinary numbers.
o 𝑁𝑎𝑁, ±∞: not considered.

o Denormal numbers: not implemented: this would require |𝑒1 − 𝑒2| = |1 − 𝑒2| when 𝑒1 = 0, or |𝑒1 − 1| when 𝑒2 = 0. But

we implement 𝐴 ± 𝐵 when 𝐴 = 0,𝐵 = 0,𝐴 = 𝐵 = 0.
If 𝐴 = 0 or 𝐵 = 0, then 𝑠𝑥 = 0 (barrel shifter input). So, the incorrect |𝑒1 − 𝑒2| does not matter; 𝑒𝑝 will also be correct.
As for the biased exponent 𝑒, if 𝑡1 ± 𝑡2 = 0, then 𝐴 ± 𝐵 = 0, and we must make 𝑒 = 0 (we use a multiplexer here).

o After normalization, the unbiased 𝑒 might be 2𝐸 − 1. This indicates overflow, but we would need to make 𝑓 = 0. We do

not implement this, so overflow is not detected.

▪ Typical cases:

✓ Single Precision: E = 8, P = 23.
✓ Double Precision: E = 8, P = 52.

E

EE

e1 e2

PP
fX fY

P+1

sX

P+1

sY

bX

2-i

SM to
2C

sg1 sg2

P+2 P+2

+/-+/-

add/sub

U_ABS_SIGN

U_ABS

P+3

P+2

2i

P+2

s

sg

MSB

LZD

E ex

P

f

sm

ep

...

E

dir

+/-

SM to
2C

01 10

f1 f2

P P

01 10

P+1 P+1

E

e1 f1
sg1

e2 f2
sg2

e fsg

±

P+1 P+1

1

32 bits

FP
add/sub

32

A B

32

32

S

A

B

S

add/sub

0: +

1: -

10

...

...

bY

SWAP

SWAP

bX

01 10

b1 b2

bY

sm

e1 0 e2 0

EE

e1 e2

01

e

E

0

Q =0

P+2

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

8 Instructor: Daniel Llamocca

FLOATING POINT MULTIPLIER AND DIVIDER

▪ Multiplier: An unsigned multiplier is required. If we use a sequential multiplier, an FSM is required to control the dataflow.
o We need to add the unbiased exponents: 𝑒𝑝 = 𝑒1 + 𝑒2. Here, a simple unsigned adder suffices. Since this operation adds
2 × 𝑏𝑖𝑎𝑠 to ep, we subtract bias from the final adjusted exponent 𝑒𝑥.

o The multiplier will require 2P+2 bits. Here, we need to truncate to P+2 bits.

▪ Divider: An unsigned divider is required. If we use a sequential divider, an FSM is required to control the dataflow.

o We need to subtract the unbiased exponents: 𝑒𝑝 = 𝑒1 − 𝑒2. This requires us to operate in 2C arithmetic. Since this
operation gets rid of the bias, we need to add the 𝑏𝑖𝑎𝑠 = 2𝐸−1 − 1 to the final adjusted exponent 𝑒𝑥.

o The divider can include any number of extra fractional bits. We use P fractional bits of precision.

EE

e1 e2

PP

f1 f2

P+1
s1

P+1
s2

1 1

2P+2

sg

...

+

E+1

sg1 sg2

EE

e1 e2

PP

f1 f2

P+1
s1

P+1
s2

1 1

sg

-

E+1

sg1 sg2

DIVIDER
with P

fractional bits

FP MULTIPLIER FP DIVIDER

2i

P+2

LZD

P

f

dir

+/-

...

...

...P+2

E
e

-

E+1 bias

epep

s

2i

P+2

LZD

P

f

dir

+/-

...

...

...P+1

E
e

-

E+1 bias
s

ex ex

unsigned signed

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

9 Instructor: Daniel Llamocca

DUAL FIXED-POINT CIRCUITS

DFX ADDER/SUBTRACTOR
▪ Here, we add two DFX numbers A and B with 𝑛 bits. To do this, we get rid of the exponent (E) bit, align the numbers, and

then add two (𝑛 − 1)-bit significands in fixed point arithmetic. Then, we convert the FX result into the DFX number.

PRE-SCALER
▪ It makes sure that the input operands (Asig, Bsig) are aligned. Four possibilities exist, based on the exponents of A and B:

𝐴𝑛−1 𝐵𝑛−1 Operation
0 0 𝑛𝑢𝑚0 + 𝑛𝑢𝑚0. No need to align.
0 1 𝑛𝑢𝑚0 + 𝑛𝑢𝑚1. Here, 𝑛𝑢𝑚0 is converted to 𝑛𝑢𝑚1. The 𝑝0 − 𝑝1 discarded bits are saved.
1 0 𝑛𝑢𝑚1 + 𝑛𝑢𝑚0. Here, 𝑛𝑢𝑚0 is converted to 𝑛𝑢𝑚1. The 𝑝0 − 𝑝1 discarded bits are saved
1 1 𝑛𝑢𝑚1 + 𝑛𝑢𝑚1. No need to align.

▪ If they both are either 𝑛𝑢𝑚0 or 𝑛𝑢𝑚1, addition is straightforward.

▪ If one is 𝑛𝑢𝑚0 and the other is 𝑛𝑢𝑚1, we have to align the fractional points to 𝑝1. This means that we convert [𝑛 − 1 𝑝0]

to [𝑛 − 1 𝑝1] by discarding 𝑝0 − 𝑝1 fractional bits and by sign-extending the extra 𝑝0 − 𝑝1 MSBs. This is not exactly the same
as converting 𝑛𝑢𝑚0 to 𝑛𝑢𝑚1, because the 𝑛𝑢𝑚0 number fits with 𝑛 bits, though the operation is very similar.

▪ Converting from [𝑛 − 1 𝑝0] to [𝑛 − 1 𝑝1]: This operation consists of: arithmetic shift of 𝑝0 − 𝑝1 bits to the right, truncation

of 𝑝0 − 𝑝1 LSBs, while keeping the fractional point where it is. This operation is not exactly ≫ 𝑝0 − 𝑝1, but it is usually

represented as such.
▪ Improving DFX Adder accuracy: We save the 𝑝0 − 𝑝1 truncated LSBs. In the post-scaler, we might need to convert [𝑛 𝑝1]

to [𝑛 𝑝0]. This operation requires shifting to the left, and we can shift in the truncated LSBs. This only happens when A and

B have different exponents. If A and B are both 𝑛𝑢𝑚0, the sum S is [𝑛 𝑝0]: we cannot shift in any other bit. If A and B are
both 𝑛𝑢𝑚1, the sum S is [𝑛 𝑝1], and there were never truncated LSBs to begin with.

FIXED-POINT ADDITION
▪ Once the numbers are aligned, we perform the fixed-point addition of two (𝑛 − 1)-bit FX numbers. This is done by sign-

extending the operands to 𝑛 bits; the result has 𝑛 bits with either 𝑝0 or 𝑝1 fractional bits.

▪ DFX addition: We want the result to have the same number of bits as the inputs. We can always sign-extend the MSB of the
significand to avoid overflow, but this defeats the purpose of DFX (we better just use FX).

▪ Overflow of FX addition: Here, we consider the overflow as if the addition were of two (𝑛 − 1) −bit numbers (with no sign-

extension), i.e., 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 = 𝑐𝑛−1𝑐𝑛−2. We need this overflow since it tells us whether 𝑛 − 1 bits suffice for the addition

n-1-p0 p0

Bsig:

n-1-p1 p1

Asig:

n-1-p0 p0

Asig:

n-1-p1 p1

Bsig:

n-1-p0 p0

Bsig:

n-1-p1 p1

Asig:

p0-p1

p0-p1
sign extension

n-1-p0 p0

Asig:

n-1-p1 p1

Bsig:

p0-p1

p0-p1
sign extension

discard

discard

≫ 𝑝0−𝑝1
N-1N-1

≫ 𝑝0−𝑝1
N-1N-1Bsig Asig

𝑛 − 1 𝑝0 𝑛−1 𝑝1 𝑛−1 𝑝1 𝑛−1 𝑝0

n-1-p0 p0

Asig:

n-1-p0 p0

Bsig:

n-1-p1 p1

Asig:

n-1-p1 p1

Bsig:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

10 Instructor: Daniel Llamocca

result. Note that the 𝑛-bit addition overflow is always zero (due to sign-extension). The FX adder performs 𝑛-bit addition (by

sign-extending); however, note that the DFX format requires one exponent bit and 𝑛 − 1 significand bits.

POST-SCALER
▪ If at least one input is 𝑛𝑢𝑚1, then the sum S will be in [𝑛 𝑝1]. If A and B are 𝑛𝑢𝑚0, then the sum S will be [𝑛 𝑝0]. Then, we

need to determine whether the DFX 𝑛-bit number is a 𝑛𝑢𝑚0 or 𝑛𝑢𝑚1. If the sum [𝑛 𝑝0] has 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 = 1, then we

convert the number to 𝑛𝑢𝑚1. If the sum [𝑛 𝑝1] has 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 = 1, then the DFX addition requires an overflow.

▪ From [𝑛 𝑝0] to [𝑛 𝑝1]: This is the same circuit ≫ 𝑝0 − 𝑝1 as in the pre-scaler, but here we use 𝑛 bits as input.

▪ From [𝑛 𝑝1] to [𝑛 𝑝0]: Left shift with zero pad (or we shift in the truncated bits that we saved).

▪ 3-input Multiplexor: it takes three 𝑛 −bit FX inputs and outputs one (𝑛 − 1) −bit FX output (the MSB is discarded). Note

how the saved 𝑝0 − 𝑝1 bits might be used when the final summation needs to be converted to 𝑛𝑢𝑚0.

▪ Range Detector

✓ It determines whether a fixed point (FX) number [𝑛𝑖𝑛 𝑝𝑖𝑛] can be represented as a DFX 𝑛𝑢𝑚0 number with 𝑛 bits. Note

that 𝐸𝑅𝐷 = 1 does not necessarily imply a DFX 𝑛𝑢𝑚1 number with 𝑛 bits, because it may actually need more than 𝑛 bits.

✓ For the DFX number to be 𝑛𝑢𝑚0 with 𝑛 bits, the corresponding FX number has to be such that the 𝑛𝑖𝑛 − 𝑝𝑖𝑛 −
(𝑛 − 1 − 𝑝0) + 1 MSBs have be all 1 or 0 (due to sign extension). This means only one of those bits is needed.

✓ The figure assumes that: 𝑛𝑖𝑛 − 𝑝𝑖𝑛 ≥ 𝑛 − 1 − 𝑝0, 𝑝0 ≥ 𝑝𝑖𝑛. If 𝑛𝑖𝑛 − 𝑝𝑖𝑛 < 𝑛 − 1 − 𝑝0 then the FX number is a 𝑛𝑢𝑚0
DFX number with 𝑛 bits. If 𝑝0 < 𝑝𝑖𝑛, we need to get rid of 𝑝0 − 𝑝𝑖𝑛 LSBs (we lose precision here).

𝐸𝑅𝐷 = 𝑏𝑛𝑖𝑛−𝑝𝑖𝑛−1⋯𝑏𝑛−1−𝑝0−1 + 𝑏𝑛𝑖𝑛−𝑝𝑖𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋯𝑏𝑛−1−𝑝0−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅

▪ The range detector needs to know FX format of the input signal (sum S), which could be [𝑛 𝑝0] or [𝑛 𝑝1]. In the DFX

adder/subtractor, we assume the input format to be [𝑛 𝑝1]. So, what happens if the input format is [𝑛 𝑝0]? Here, the Range

Detector output will be invalid. This is why we need the signal 𝑓_𝑛𝑢𝑚0 which indicates whether the format of S is [𝑛 𝑝0].
✓ 𝑓_𝑛𝑢𝑚0 = 0: This means that the format of S is [𝑛 𝑝0] and that 𝐸𝑅𝐷 is invalid. Here, 𝐸 = 0. However, this does not mean

that the number S can be represented in DFX as a 𝑛𝑢𝑚0 with 𝑛 bits (since the result of the range detector is invalid).

We need the 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 bit to determine that. If this bit is 1, we need to convert S to 𝑛𝑢𝑚1 to avoid DFX overflow; if
that bit is 0 the number S is a 𝑛𝑢𝑚0.

✓ 𝑓_𝑛𝑢𝑚0 = 1: This means that the format of S is [𝑛 𝑝1]. Here, 𝐸 = 𝐸𝑅𝐷. If 𝐸 = 0, the sum S is a 𝑛𝑢𝑚0 with 𝑛 bits. If 𝐸 =
1, the sum S might be a 𝑛𝑢𝑚1 with 𝑛 bits (we need to determine 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 this).

▪ 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1: The adder/subtractor sign-extends the inputs of width 𝑛 − 1 and the result is a 𝑛-bit number. The overflow of

this circuit is always 0 (due to sign extension). 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 refers to the overflow when only considering the (𝑛 − 1)-bit
addition/subtraction. This useful signal determines whether the sum S requires more than 𝑛 − 1 bits.

▪ Addition: We save the 𝑝0 − 𝑝1 bits that are discarded in the Pre-Scaling stage. If the final result is a 𝑛𝑢𝑚0, we can bring

back those bits to increase precision. But if the final result is 𝑛𝑢𝑚1, we lose those bits for good.

0 k

n-1-p0 p0
E

num0
n bits

nin-pin pin

k k ... k

nin-pin-(n-1-p0)+1p0 n

ERD0, -B Input < B

1, otherwise
ERD

n-p0 p0

S:

n-p0 p0

S_1:

p0-p1
sign extension

discard

p0-p1 n-p1 p1

S:

S_0:

p0-p1

n-p0p0-p1 p1 p0-p1

discard

insert truncated
bits or zeros

≫ 𝑝0−𝑝1
nS_1n

 𝑝0−𝑝1
nS_0nS S

𝑛 𝑝0 𝑛 𝑝1 𝑛 𝑝1 𝑛 𝑝0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

11 Instructor: Daniel Llamocca

▪ Subtraction: We would need a drastic change in the architecture to save those 𝑝0 − 𝑝1 bits discarded in the Pre-scaler. When

𝑎𝑑𝑑𝑠𝑢𝑏 = 1, the carry in of the FX adder/subtractor is 1, thus the 𝑝0 − 𝑝1 bits of the subtrahend (even if flipped) are not

useful. So, we do not save the 𝑝0 − 𝑝1 bits in the case of subtraction.

▪ Overflow (DFX Adder/Subtractor): This occurs when the sum S cannot be represented as a 𝑛𝑢𝑚1 with 𝑛 bits. One way

to overcome this problem is to increase the DFX format to 𝑛 + 1 bits, though this is not customary as the idea of DFX

arithmetic is to keep the same number of bits throughout the operations.

▪ Control Block:
overflowN-1 EC 𝒇_𝒏𝒖𝒎𝟎 overflow ECTRL sCTRL Comments

0 0 0 0 0 00
Sum S is [𝑛 𝑝0] and no overflow with 𝑛 − 1 bits: The sum S can

be represented in DFX as a 𝑛𝑢𝑚0 with 𝑛 bits.

0 0 1 0 0 10
Sum S is [𝑛 𝑝1] and 𝐸𝐶 = 0 means that the sum S can be
represented in DFX as a 𝑛𝑢𝑚0 with 𝑛 bits.

0 1 0 0 1 01 Impossible case: 𝐸𝐶 should be 0 if 𝑓_𝑛𝑢𝑚 = 0.

0 1 1 0 1 00

Sum S is [𝑛 𝑝1], 𝐸𝐶 = 1 means that S is not a 𝑛𝑢𝑚0 with 𝑛 bits. As

there is no overflow with 𝑛 − 1 bits, the sum S can be represented
as a 𝑛𝑢𝑚1 with 𝑛 bits.

1 0 0 0 1 01

Sum S is [𝑛 𝑝0] and overflow with 𝑛 − 1 bits: The sum S needs to

be first converted to [𝑛 𝑝1], where it can be represented as a
𝑛𝑢𝑚1 with 𝑛 bits.

1 0 1 0 0 10

Impossible case: Sum S is [𝑛 𝑝1] and 𝐸𝐶 = 0 means that the sum
S can be represented in DFX as a 𝑛𝑢𝑚0 with 𝑛 bits. So,

𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 cannot be 1.
1 1 0 0 1 01 Impossible case: 𝐸𝐶 should be 0 if 𝑓_𝑛𝑢𝑚 = 0.

1 1 1 1 1 00

Sum S is [𝑛 𝑝1], 𝐸𝐶 = 1 means that S is not a 𝑛𝑢𝑚0 with 𝑛 bits.
As there is overflow with 𝑛 − 1 bits, the sum S cannot be

represented as a 𝑛𝑢𝑚1 with 𝑛 bits. Thus, we have DFX overflow.

Examples: n=16, p0=8, p1=4

Operation Sum (FX) overflowN-1 Erng EC Post-Scale Answer
01.0A + 01.0B 01.0A+01.0B = 02.15 0 0 0 No need 02.15

800.3 + 00.CA 000.3+000.C = 000.F 0 0 1 To [𝑛 𝑝0], append A 00.FA

0

1≫ 𝑝0−𝑝1

Asig

AN-1

BN-1

0

1≫ 𝑝0−𝑝1

Bsig

AN-1

BN-1 +

RANGE
DETECTOR

𝑛 𝑝1

p0 n

AN-1

BN-1

CONTROL

0

1

2

≫ 𝑝0−𝑝1

 𝑝0−𝑝1

overflow

R

Rsig

0

1

2

AN-1

BN-1

0

p0-p1

p0-p1

p0-p1

MSB

discarded

PRE-SCALER POST-SCALER

o
v
e
rf

lo
w

N
-1

AN-1 BN-1 st

0 0 10

0 1 00

1 0 01

1 1 10

st

S

S_1

S_0

EC

sCTRL

E
C

T
R

L

f_num0

𝑛 𝑝0

𝑛 𝑝1

𝑛 𝑝1

𝑛 𝑝0

A

B

A
N

-1
..

.A
0

B
N

-1
..

.B
0

addsub

0

addsub
0 1

ERD

𝑛

𝑛

𝑛 −1

𝑛 −1

𝑛𝑛 −1

𝑛

𝑛

𝑛

𝑛 −1

𝑛 −1

𝑛

𝑛

𝑛

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

12 Instructor: Daniel Llamocca

OTHER CIRCUITS

FIXED-POINT SQUARE ROOT
▪ Algorithms for hardware implementation amount to a ‘binary search’ and can be classified as Restoring and Non-Restoring.
𝐷 (radical): 2𝑛 bits, 𝑄 (square root): 𝑛 bits.

Restoring Algorithm Non-Restoring Algorithm
𝑄 ← 0
𝑓𝑜𝑟 𝑘 = 𝑛 − 1 → 0
𝑞𝑘 ← 1
𝑖𝑓 𝐷 < 𝑄2 𝑡ℎ𝑒𝑛
𝑞𝑘 ← 0

𝑒𝑛𝑑
𝑒𝑛𝑑

𝑞𝑛−1 ← 1
𝑓𝑜𝑟 𝑘 = 𝑛 − 2 → 0
𝑖𝑓 𝐷 < 𝑄2 𝑡ℎ𝑒𝑛
𝑄 ← 𝑄 − 2𝑘

𝑒𝑙𝑠𝑒
𝑄 ← 𝑄 + 2𝑘

𝑒𝑛𝑑
𝑒𝑛𝑑

Example: 𝐷 = 40 = 101000,𝑄 = 000, 𝑛 = 3
𝑘 = 2: 𝑞2 = 1 (𝑄 = 100) 40 < 4

2? 𝑁𝑜
𝑘 = 1: 𝑞1 = 1 (𝑄 = 110) 40 < 6

2? 𝑁𝑜
𝑘 = 0: 𝑞0 = 1 (𝑄 = 111)
40 < 72? 𝑌𝑒𝑠 → 𝑞0 = 0 (𝑄 = 110)

Result: 𝑄 = 110, 𝑅 = 𝐷 − 𝑄2 = 0100

Example: 𝐷 = 40 = 101000, 𝑛 = 3
𝑞2 = 1 (𝑄 = 100)
𝑘 = 1: 40 < 42? 𝑁𝑜 𝑄 ← 𝑄 + 21 = 110
𝑘 = 0: 40 < 62? 𝑁𝑜 𝑄 ← 𝑄 + 20 = 111
Result: 𝑄 = 111, 𝑅 = 𝐷 − 𝑄2? The LSB of the result might

differ from that of the restoring case. Also, the remainder
might be incorrect when using this algorithm.

OPTIMIZED NON-RESTORING INTEGER SQRT ALGORITHM
▪ This algorithm for non-restoring square root VLSI implementation, described in A New Non-Restoring Square Root Algorithm

and its VLSI Implementation”, Y. Li, W. Chu, 1996, has proved to outperform most hardware algorithms. A simple addition
and subtraction is required based on the result bit generated in the previous iteration. No multipliers or multiplexors are
needed. The result of the addition or subtraction is fed via registers to the next iteration directly even if it is negative.

▪ At the last iteration, if the remainder is non-negative, it is the precise remainder. Otherwise, we can get the precise remainder
by an addition operation, but since it is rarely used, it is dismissed in order to reduce resource consumption.
Radical: 𝐷 = 𝑑2𝑛−1𝑑2𝑛−2𝑑2𝑛−3𝑑2𝑛−4…𝑑1𝑑0
Square Root: 𝑄 = 𝑞𝑛−1𝑞𝑛−2…𝑞0

We define: 𝐷𝑘 = 𝑑2𝑛−1𝑑2𝑛−2…𝑑𝑘 , 𝑘 = 0,1, … , 𝑛 − 1. 𝐷2𝑘 has 2(𝑛 − 𝑘) bits.

 𝑄𝑘 = 𝑞𝑛−1𝑞𝑛−2…𝑞𝑘 , 𝑘 = 0,1, … , 𝑛 − 1 𝑄𝑘 has 𝑛 − 𝑘 bits.

𝑓𝑜𝑟 𝑘 = 𝑛 − 1 𝑑𝑜𝑤𝑛𝑡𝑜 0
 𝑖𝑓 𝑘 = 𝑛 − 1 𝑡ℎ𝑒𝑛

𝑅′𝑘 = 𝑑2𝑘+1𝑑2𝑘 − 01 (𝑅′𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2 − 01)
𝑒𝑙𝑠𝑒

𝑅′𝑘 = {
𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘 − 𝑄𝑘+101, 𝑖𝑓𝑞𝑘+1 = 1

𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘 + 𝑄𝑘+111, 𝑖𝑓𝑞𝑘+1 = 0

𝑒𝑛𝑑

𝑞𝑘 = {
1, 𝑖𝑓 𝑅′𝑘 ≥ 0

0, 𝑖𝑓 𝑅′𝑘 < 0

𝑒𝑛𝑑

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑅 = 𝑅0 = {
𝑅′0 𝑖𝑓 𝑅′0 ≥ 0

𝑅′0 + 𝑄101, 𝑖𝑓 𝑅′0 < 0

▪ Estimated remainder: 𝑅′𝑘 = 𝑟′𝑛𝑟′𝑛−1𝑟′𝑛−2…𝑟′𝑘 (requires 𝑛 − 𝑘 + 1 bits) The MSB (sign bit) determines the value of 𝑞𝑘 (𝑞𝑘 is

computed at each iteration). The 𝑅′𝑘 value generated at each iteration is used in the next iteration even if it is negative (the

2C representation is used here). Note that the operands are always treated as unsigned numbers.
▪ Finally, in order to get the actual remainder 𝑅 = 𝑅0, only the 𝑛 + 1 LSBs of 𝑅′0 are needed (the MSB determines 𝑞0). In

practice, the remainder is seldom needed.

Example:
𝐷 = 0111111,𝑛 = 4, 𝑅 = 00000,𝑄 = 0000
𝑘 = 𝑛 − 1 = 3: 𝑅’3 = 01 – 01 = 00 , 𝑅’3 = 𝑟′4𝑟′3 = 00, 𝑟’3 ≥ 0 → 𝑞3 = 1 𝑄 = 1000
𝑘 = 𝑛 − 2 = 2: 𝑅’2 = 𝑅’311 − 𝑄301 = 0011 − 0101 = −10 , 𝑅’2 = 𝑟′4𝑟′3𝑟′2 = 110, 𝑅’2 < 0 → 𝑞2 = 0 𝑄 = 1000

When the subtraction result is < 0, we use the 2C representation with 𝑛 − 𝑘 + 1 bits. The sign bit decides the value of 𝑞𝑘.
𝑘 = 1: 𝑅’1 = 𝑅’211 + 𝑄211 = 11011 + 1011 = 100110 , 𝑅’1 = 𝑟′4𝑟′3𝑟′2𝑟′1 = 0110, 𝑅′1 ≥ 0 → 𝑞1 = 1 𝑄 = 1010
𝑘 = 0: 𝑅’0 = 𝑅’111 − 𝑄101 = 011011 − 10101 = 00110 , 𝑅’0 = 𝑟′4𝑟′3𝑟′2𝑟′1𝑟′0 = 00110, 𝑅’0 ≥ 0 → 𝑞0 = 1 𝑄 = 1011
Also: 𝑅 = 𝑅’0 = 00110

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

13 Instructor: Daniel Llamocca

ITERATIVE ARCHITECTURE
▪ The size of the elements (registers, adder/subtractor) will be:

Register R: 𝑛 + 1 bits Register Q: 𝑛 bits

Adder/subtractor: 𝑛 + 2 bits. This is because the last iteration requires 𝑅′0 = {
𝑅′1𝑑1𝑑0 −𝑄101, 𝑖𝑓𝑞1 = 1

𝑅′1𝑑1𝑑0 +𝑄111, 𝑖𝑓𝑞1 = 0
. 𝑅′1 requires 𝑛 bits,

thus we need operands with 𝑛 + 2 bits. However, the result 𝑅’0 only requires 𝑛 + 1 bits. Also, for the purposes of subtraction,

the operands are treated as signed numbers.

(𝑛 + 2)-bit adder/subtractor: the 2 LSBs performs either 𝑥𝑦 − 01 or 𝑥𝑦 + 11,
𝑥𝑦 = 𝑑2𝑘+1𝑑2𝑘. The operation yields: 𝑐𝑏𝑎, where 𝑐 is the carry-in of the next

stage of the adder/subtractor, and 𝑏𝑎 the result of the operation.

𝑏𝑎 depends only on 𝑥𝑦, but 𝑐 depends on the operation. However, a standard

adder/subtractor with carry-in treats the carry-in as in positive logic when
adding, and as in negative logic when subtracting. This allows us to re-define
the truth table, where we invert 𝑐 (for subtraction) in the truth table so that

it works properly in the adder/subtractor with carry in:

Now, 𝑐 and 𝑏𝑎 depend only on ‘xy’: 𝑐 = 𝑥 + 𝑦, 𝑏 = 𝑥𝑦̅̅ ̅̅ ̅̅ , 𝑎 = 𝑦

This reduces the width of the adder/subtractor by 2 bits. 𝑏𝑎, implemented

with logic gates, is placed on the 2 LSBs of the register 𝑅′, and the carry-in

comes from the OR gate. Thus, we only need an adder/subtractor with 𝑛 bits

and a carry-in.

Summation/subtraction operation
▪ 𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘. For 𝑘 = 0, this operator requires 𝑛 + 2 bits.

▪ 𝑄𝑘+101 or 𝑄𝑘+111. For 𝑘 = 0, this operator requires 𝑛 + 1 bits (𝑄 𝑘+1 requires 𝑛 − 1 bits) and we need to zero-extend it.

▪ Result 𝑅′𝑘: for 𝑘 = 0, it requires 𝑛 + 1 bits. So, for 𝑘 = 0, we only need 𝑛 − 1 bits (LSBs) out of the adder/subtractor (we

get the other 2 bits from x and y). We use the MSB as the sign bit.

The process starts when s = ‘1’. After 𝑛 clock cycles, the result appears in register 𝑄.

COMPUTING MORE PRECISION BITS
▪ If 𝑥 more precision bits are needed, we can append 2𝑥 zeros to D. This implies that we need to add 𝑥 extra bits to 𝑄.

▪ 𝐷𝑝 = 𝐷 × 22𝑥, 𝑄𝑝 = √𝐷𝑝, 𝑄 = √𝐷

▪ 𝐷𝑝: 2𝑛 + 2𝑥 bits, 𝑄𝑝: 𝑛 + 𝑥 bits. 𝑥: number of precision bits

𝑄𝑝 = √𝐷𝑝 = √𝐷 × 22𝑥 = √𝐷 × 2𝑥 → 𝑄 = √𝐷 =
𝑄𝑝
2𝑥⁄

Hardware changes
▪ Let’s define: 𝑛𝑞 = 𝑛 + 𝑥. We use 𝑄 with 𝑛𝑞 bits, R with 𝑛𝑞 + 1 bits. The adder/subtractor uses 𝑛𝑞 bits.

▪ There is no need to increase the size of the register D. We can still use 2n bits, as ‘00’ is always shifted in (this emulates the
2𝑥 zeros in the first 𝑥 cycles). In the FSM, C starts with 𝑛𝑞 − 1, the result is obtained after 𝑛𝑞 cycles.

xy

00

01

cba

cba = xy + 11

011

100

xy

00

01

cba

111

000

cba = xy - 01

00

01

101

110

00

01

001

010

xy

00

01

cba

cba = xy + 11

011

100

xy

00

01

cba

011

100

cba = xy - 01

00

01

101

110

00

01

101

110

+/-

0

n

MSB
n-2

n-2

2

2

n-2

R

n-1

Q

x y

cin

00
2

D

Di

R 0, D D_i, C n-1

s

Q 0

C C- 1

resetn = 0
S1

S2

yes no

1

0

done 1 C = 0

2n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

14 Instructor: Daniel Llamocca

Example: (restoring algorithm)

Get √𝐷 using 𝑥 = 2 precision bits. 𝐷 = 110111 = 55, 𝑛 = 3
Then: 𝐷𝑝 = 1101110000 = 880. Then 𝑛𝑞 = 𝑛 + 𝑥 = 5
𝑘 = 4: 𝑞4 = 1 (𝑄 = 10000). 880 < 16

2? 𝑁𝑜
𝑘 = 3: 𝑞4 = 3 (𝑄 = 11000). 880 < 24

2? 𝑁𝑜
𝑘 = 2: 𝑞2 = 1 (𝑄 = 11100). 880 < 28

2? 𝑁𝑜
𝑘 = 1: 𝑞1 = 1 (𝑄 = 11110). 880 < 30

2? 𝑌𝑒𝑠 → 𝑞2 = 0 (𝑄 = 11100)
𝑘 = 0: 𝑞0 = 1 (𝑄 = 11101). 880 < 29

2? 𝑁𝑜
Result: 𝑄𝑝 = 11101, 𝑅𝑝 = 𝐷𝑝 − 𝑄𝑝2 = 100111

Final Result: 𝑄 = 111.01 = 7.25 ≈ √55

What if the input (let’s call it 𝑫𝒇) is in fixed-point format [𝟐𝒏 𝟐𝒑]?

▪ The integer input (called 𝐷) is related to 𝐷𝑓 by: 𝐷𝑓 = 𝐷 × 2−2𝑝. 2𝑛 = number of total bits of 𝐷𝑓.

𝑄𝑓 = √𝐷𝑓 = √𝐷 × 2−2𝑝 = √𝐷 × 2−𝑝

▪ So, we first compute the square root of 𝐷 (i.e., 𝐷𝑓 without the fractional point), and then we place the fractional point so

that the number has 𝑝 fractional bits.

▪ If we need extra precision bits, we only need to add 2𝑥 zeros to 𝐷. Thus 𝐷𝑝 = 𝐷 × 22𝑥.

𝑄𝑓 = √𝐷𝑓 = √𝐷 × 2−𝑝 = √𝐷𝑝 × 2−2𝑥 × 2−𝑝 = √𝐷𝑝 × 2−𝑝−𝑥

▪ Again, we first compute the square root of 𝐷𝑝, and then we place the fractional point so that the number 𝑄𝑓 has 𝑝 + 𝑥
fractional bits.

Example (restoring algorithm)
𝐷𝑓 = 111011.1011 = 59.6875, 𝑝 = 2, 𝑛 = 5. Format [10 4].
𝑄𝑓 format: [𝑛 + 𝑥 𝑝 + 𝑥]. 𝑥: extra precision bits.

Step 1: Get the integer D.
 𝐷 = 1110111011 = 955

Step 2: Add (optionally) 2𝑥 = 4 zeros

 𝐷𝑝 = 11101110110000 = 15280

Step 3: Get 𝑄𝑝 = √𝐷𝑝

Then: 𝐷𝑝 = 11101110110000 = 15280. Then 𝑛𝑞 = 𝑛 + 𝑥 = 5 + 2 = 7
𝑘 = 6: 𝑞6 = 1 (𝑄 = 1000000). 15280 < 64

2? 𝑁𝑜
𝑘 = 5: 𝑞5 = 1 (𝑄 = 1100000). 15280 < 96

2? 𝑁𝑜
𝑘 = 4: 𝑞4 = 1 (𝑄 = 1110000). 15280 < 112

2? 𝑁𝑜
𝑘 = 3: 𝑞3 = 1 (𝑄 = 1111000). 15280 < 120

2? 𝑁𝑜
𝑘 = 2: 𝑞2 = 1 (𝑄 = 1111100). 15280 < 124

2? 𝑌𝑒𝑠 → 𝑞2 = 0 (𝑄 = 1111000)
𝑘 = 1: 𝑞1 = 1 (𝑄 = 1111010). 15280 < 122

2? 𝑁𝑜
𝑘 = 0: 𝑞0 = 1 (𝑄 = 1111011). 15280 < 123

2? 𝑁𝑜
Result: 𝑄𝑝 = 1111011, 𝑅𝑝 = 𝐷𝑝 − 𝑄𝑝2 = 10010111

Final Result (𝑝 + 𝑥 = 4): 𝑄𝑓 = 111.1011 = 7.6875 ≈ √59.6875

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

15 Instructor: Daniel Llamocca

CORDIC (COORDINATE ROTATION DIGITAL COMPUTER) ALGORITHM

CIRCULAR CORDIC
▪ The original circular CORDIC algorithm is described by the following iterative equations, where 𝑖 is the index of the iteration

(𝑖 = 0, 1, 2, 3,… , 𝑁 − 1). Depending on the mode of operation, the value of 𝛿𝑖 is either +1 or –1:

𝑥𝑖+1 = 𝑥𝑖 + 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛
−1(2−𝑖)

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▪ Depending on the mode of operation, the quantities X, Y and Z tend to the following values, for sufficiently large 𝑁:

Rotation Mode Vectoring Mode

𝑥𝑛 = 𝐴𝑛(𝑥0𝑐𝑜𝑠𝑧0 − 𝑦0𝑠𝑖𝑛𝑧0)

𝑦𝑛 = 𝐴𝑛(𝑦0𝑐𝑜𝑠𝑧0 + 𝑥0𝑠𝑖𝑛𝑧0)

𝑧𝑛 = 0

𝑥𝑛 = 𝐴𝑛√𝑥0
2 + 𝑦0

2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧0 + 𝑡𝑎𝑛
−1(𝑦0 𝑥0⁄)

𝐴𝑛 ← ∏ √1 + 2−2𝑖𝑁−1
𝑖=0 . For 𝑁 →∝ , 𝐴𝑛 = 1.647. The 𝑡𝑎𝑛−1 function here has a different definition (called 𝑎𝑡𝑎𝑛2), as the

values it compute lie in the range [−180°, 180°], i.e., it indicates the quadrant where the point (𝑥0, 𝑦0) lies.

▪ With a proper choice of the initial values 𝑥0, 𝑦0, 𝑧0 and the operation mode, the following functions can be directly computed:

✓ 𝑦0 = 0, 𝑥0 = 1 𝐴𝑛⁄ , rotation mode 𝑥𝑛 = 𝑐𝑜𝑠𝑧0, 𝑦𝑛 = 𝑠𝑖𝑛𝑧0
✓ 𝑧0 = 0, 𝑥0 = 1, vectoring mode 𝑧𝑛 = 𝑡𝑎𝑛

−1(𝑦0)

✓ 𝑥0 = 𝑎, 𝑦0 = 𝑏, vectoring mode 𝑥𝑛 = 𝐴𝑛√𝑎
2 + 𝑏2. We need to post-scale the output.

LINEAR CORDIC
▪ This is an extension to the circular CORDIC. No scaling corrections are needed. (𝑖 = 1, 2, 3, …).

𝑥𝑖+1 = 𝑥𝑖
𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2

−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 2
−𝑖

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▪ Depending on the mode of operation, the quantities X, Y and Z tend to the following values, for sufficiently large 𝑁:

Rotation Mode Vectoring Mode

𝑥𝑛 = 𝑥1
𝑦𝑛 = 𝑦1 + 𝑥1𝑧1
𝑧𝑛 = 0

𝑥𝑛 = 𝑥1
𝑦𝑛 = 0

𝑧𝑛 = 𝑧1 + 𝑦1 𝑥1⁄

▪ With a proper choice of the initial values 𝑥0, 𝑦0, 𝑧0 and the operation mode, the following functions can be directly computed:

✓ 𝑦1 = 0, rotation mode 𝑦𝑛 = 𝑥1𝑧1
✓ 𝑧1 = 0, vectoring mode 𝑧𝑛 = 𝑦1 𝑥1⁄

HYPERBOLIC CORDIC
▪ This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where 𝑖 is the index of

the iteration (𝑖 = 1, 2, 3, …). The following iterations must be repeated to guarantee convergence: 𝑖 = 4, 13, 40,… , 𝑘, 3𝑘 + 1.
𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑥𝑖2

−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑡𝑎𝑛ℎ
−1(2−𝑖)

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▪ Depending on the mode of operation, the quantities X, Y and Z tend to the following values, for sufficiently large 𝑁:

Rotation Mode Vectoring Mode

𝑥𝑛 = 𝐴𝑛(𝑥1𝑐𝑜𝑠ℎ𝑧1 + 𝑦1𝑠𝑖𝑛ℎ𝑧1)

𝑦𝑛 = 𝐴𝑛(𝑦1𝑐𝑜𝑠ℎ𝑧1 + 𝑥1𝑠𝑖𝑛ℎ𝑧1)

𝑧𝑛 = 0

𝑥𝑛 = 𝐴𝑛√𝑥1
2 − 𝑦1

2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧1 + 𝑡𝑎𝑛ℎ
−1(𝑦1 𝑥1⁄)

𝐴𝑛 ← ∏ √1 − 2−2𝑖𝑁
𝑖=1 (this includes the repeated iterations 𝑖 = 4, 13, 40,…,). For 𝑁 →∝ , 𝐴𝑛 ≅ 0.8

▪ With a proper choice of the initial values 𝑥1, 𝑦1, 𝑧1 and the operation mode, the following functions can be directly computed:

✓ 𝑦1 = 0, 𝑥1 = 1 𝐴𝑛⁄ , rotation mode 𝑥𝑛 = 𝑐𝑜𝑠ℎ𝑧1, 𝑦𝑛 = 𝑠𝑖𝑛ℎ𝑧1
✓ 𝑧1 = 0, 𝑥1 = 1, vectoring mode 𝑧𝑛 = 𝑡𝑎𝑛ℎ

−1(𝑦1)
✓ 𝑥1 = 𝑦1 = 1 𝐴𝑛⁄ , rotation mode 𝑥𝑛 = 𝑦𝑛 = 𝑐𝑜𝑠ℎ𝑧1 + 𝑠𝑖𝑛ℎ𝑧1 = 𝑒

𝑧1

✓ 𝑥1 = 𝛼 + 1, 𝑦1 = 𝛼 − 1, 𝑧1 = 0, vectoring mode 𝑧𝑛 = 𝑡𝑎𝑛ℎ
−1(𝛼 − 1 𝛼 + 1⁄) = (ln 𝛼) 2⁄ .

✓ 𝑥1 = 𝛼 + 1 (4𝐴𝑛
2)⁄ , 𝑦1 = 𝛼 − 1 (4𝐴𝑛

2)⁄ , 𝑧1 = 0, vectoring mode 𝑥𝑛 = √𝛼

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

16 Instructor: Daniel Llamocca

RANGE OF CONVERGENCE
▪ The basic range of convergence [−𝜃𝑁, 𝜃𝑁], obtained by a method developed by X. Hu et al, “Expanding the Range of

Convergence of the CORDIC Algorithm”, results in:

Rotation Mode: |𝑧𝑖𝑛| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=𝑖𝑖𝑛

 Circular: 𝑖𝑖𝑛 = 0, 𝑧𝑖𝑛 = 𝑧0, 𝛼𝑖𝑛 = 𝑡𝑎𝑛
−1(
𝑦0
𝑥0⁄)

 Linear: 𝑖𝑖𝑛 = 1, 𝑧𝑖𝑛 = 𝑧1, 𝛼𝑖𝑛 =
𝑦1
𝑥1⁄

 Hyperbolic: 𝑖𝑖𝑛 = 1, 𝑧𝑖𝑛 = 𝑧1, 𝛼𝑖𝑛 = 𝑡𝑎𝑛ℎ
−1(
𝑦1
𝑥1⁄). Note that in

the summation, we must repeat the terms 𝑖 = 4, 13, 40,
Vectoring Mode: |𝛼𝑖𝑛| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=𝑖𝑖𝑛

▪ Circular:

𝜃𝑁 +∑𝜃𝑖

𝑁

𝑖=0

= 𝑡𝑎𝑛−1(2−𝑁) +∑𝑡𝑎𝑛−1(2−𝑖)

𝑁

𝑖=0

= 1.7433 (𝑁 → ∞)

Rotation |𝑧0| ≤ 1.7433 (99.9°)
Input angle 𝜖 [−99.9°, 99.9°]. Functions with

angles outside this range can be computed by
applying trigonometric identities.

Vectoring |𝑡𝑎𝑛−1(
𝑦0
𝑥0⁄)| ≤ 1.7433 (99.9°) →

𝑦0
𝑥0⁄ 𝜖〈−∞,∞〉

There are no restrictions on the ratio
𝑦0
𝑥0⁄ .

However, we cannot compute the angle for
values outside the range [−99.9°, 99.9°].

▪ Linear:

𝜃𝑁 +∑𝜃𝑖

𝑁

𝑖=1

= 2−𝑁 +∑2−𝑖
𝑁

𝑖=1

= 1

Rotation |𝑧1| ≤ 1 In both cases, there is a strict limitation on the
input argument of the linear function (e.g.
multiplication, division)

Vectoring |
𝑦1
𝑥1⁄ | ≤ 1

▪ Hyperbolic:

𝜃𝑁 +∑𝜃𝑖

𝑁

𝑖=1

= 𝑡𝑎𝑛ℎ−1(2−𝑁) +∑𝑡𝑎𝑛ℎ−1(2−𝑖)

𝑁

𝑖=1

= 1.182 (𝑁 → ∞)

Rotation |𝑧1| ≤ 1.182
This is the limitation imposed to the input argument
of the hyperbolic functions. Note that the full
domain of the functions 𝑠𝑖𝑛ℎ and 𝑐𝑜𝑠ℎ is 〈−∝,∝〉.

Vectoring |𝑡𝑎𝑛ℎ−1(
𝑦1
𝑥1⁄)| ≤ 1.182 → |

𝑦1
𝑥1⁄ | ≤ 0.807

This is the limitation imposed to the ratio of the
input arguments of the hyperbolic functions. Note
that the domain of 𝑡𝑎𝑛ℎ−1 is 〈−1,1〉.

EXPANDED CORDIC ALGORITHM
▪ The limited range of convergence of the original CORDIC algorithm is expanded by including iterations with negative

indices. We describe the expanded circular and hyperbolic CORDIC algorithms, and the functions that we will implement.

Expanded circular CORDIC

∀𝑖: {

𝑥𝑖+1 = 𝑥𝑖 + 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛
−1(2−𝑖)

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▪ There are 𝑀 negative iterations (𝑖 = −𝑀,… ,−1) and 𝑁 positive iterations (𝑖 = 0,1,… , 𝑁 − 1). For sufficiently large 𝑁, the

values of 𝑥𝑛 , 𝑦𝑛, 𝑧𝑛 converge to:

Rotation Mode Vectoring Mode

𝑥𝑛 = 𝐴𝑛(𝑥𝑖𝑛𝑐𝑜𝑠𝑧𝑖𝑛 − 𝑦𝑖𝑛𝑠𝑖𝑛𝑧𝑖𝑛)

𝑦𝑛 = 𝐴𝑛(𝑦𝑖𝑛𝑐𝑜𝑠𝑧𝑖𝑛 + 𝑥𝑖𝑛𝑠𝑖𝑛𝑧𝑖𝑛)

𝑧𝑛 = 0

𝑥𝑛 = 𝐴𝑛√𝑥𝑖𝑛
2 + 𝑦𝑖𝑛

2 , 𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑡𝑎𝑛
−1(𝑦𝑖𝑛 𝑥𝑖𝑛⁄)

𝐴𝑛 = ∏ √1 + 2−2𝑖𝑁−1
𝑖=−𝑀 . Here, the value of 𝑀 affects 𝐴𝑛.

▪ We can cover the entire domain of 𝑐𝑜𝑠/𝑠𝑖𝑛 and range of 𝑡𝑎𝑛−1 with 𝜃𝑚𝑎𝑥(𝑀) = 𝜋, i.e. 𝑀 = 2.
▪ Alternatively, we can repeat the iteration 𝑖 = 0 two more times (𝑖 = 0,0,0,1,2, , … ,𝑁 − 1) in order to get 𝜃𝑚𝑎𝑥(𝑀) = 𝜋. This is

the method that optimizes hardware resources.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

17 Instructor: Daniel Llamocca

Expanded hyperbolic CORDIC
▪ This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where 𝑖 is the index of

the iteration (𝑖 = 1, 2, 3, …). The following iterations must be repeated to guarantee convergence: 𝑖 = 4, 13, 40,… , 𝑘, 3𝑘 + 1.

𝑖 ≤ 0: {

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑦𝑖(1 − 2
𝑖−2)

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖(1 − 2
𝑖−2)

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛ℎ
−1(1 − 2𝑖−2)

𝑖 > 0: {

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 ,𝑖 = 𝑇𝑎𝑛ℎ
−1(2−𝑖)

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▪ There are 𝑀 + 1 negative iterations (𝑖 = −𝑀,… ,−1,0) and 𝑁 positive iterations (𝑖 = 1,2,… , 𝑁), with repeated iterations

4, 13, 40,… , 𝑘, 3𝑘 + 1 to guarantee convergence. For sufficiently large 𝑁, the values of 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛 converge to:

Rotation Mode Vectoring Mode

𝑥𝑛 = 𝐴𝑛(𝑥𝑖𝑛𝑐𝑜𝑠ℎ𝑧𝑖𝑛 + 𝑦𝑖𝑛𝑠𝑖𝑛ℎ𝑧𝑖𝑛)

𝑦𝑛 = 𝐴𝑛(𝑦𝑖𝑛𝑐𝑜𝑠ℎ𝑧𝑖𝑛 + 𝑥𝑖𝑛𝑠𝑖𝑛ℎ𝑧𝑖𝑛)

𝑧𝑛 = 0

𝑥𝑛 = 𝐴𝑛√𝑥𝑖𝑛
2 − 𝑦𝑖𝑛

2 , 𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑡𝑎𝑛ℎ
−1(𝑦𝑖𝑛 𝑥𝑖𝑛⁄)

𝐴𝑛 = (∏ √1 − (1 − 2𝑖−2)20
𝑖=−𝑀)∏ √1 − 2−2𝑖𝑁

𝑖=1 . Here, the value of 𝑀 affects 𝐴𝑛.

▪ As 𝑀 increases, the range of convergence [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)] can be greatly enlarged. However, this comes at the expense

of a larger resource consumption.
𝑀 𝑐𝑜𝑠ℎ𝑥, 𝑠𝑖𝑛ℎ𝑥, 𝑒𝑥 ln 𝑥

𝐵𝑎𝑠𝑖𝑐 𝐶𝑂𝑅𝐷𝐼𝐶 [−1.11820, 1.11820] (0, 9.35958]

0 [−2.09113, 2.09113] (0, 65.51375]

1 [−3.44515, 3.44515] (0, 982.69618]

2 [−5.16215, 5, 16215] (0, 3.04640 × 104]

3 [−7.23371, 7.23371] (0, 1.91920 × 106]

4 [−9.65581, 9.65581] (0, 2.43742 × 108]

5 [−12.42644, 12.42644] (0, 6.21539 × 1010]

6 [−15.54462, 15,54462] (0,3.17604 × 1013]

7 [−19.00987, 19.00987] (0, 3.24910 × 1016]

8 [−22.82194, 22.82194] (0, 6.65097 × 1019]

9 [−26.98070, 26,98070] (0, 2.72357 × 1023]

10 [−31.48609, 31.48609] (0, 2.23085 × 1027]

Computation of trigonometic and hyperbolic functions
▪ The 𝑐𝑜𝑠/𝑠𝑖𝑛/𝑡𝑎𝑛−1 (circular) and 𝑐𝑜𝑠ℎ/𝑠𝑖𝑛ℎ/𝑒𝑥/𝑡𝑎𝑛ℎ−1 (hyperbolic) functions can be directly computed by proper selection

of the operation mode and the initial values 𝑥𝑖𝑛 = 𝑥−𝑀 , 𝑦𝑖𝑛 = 𝑦−𝑀 , 𝑧𝑖𝑛 = 𝑧−𝑀.

✓ For 𝑒𝛼 = 𝑐𝑜𝑠ℎ𝛼 + 𝑠𝑖𝑛ℎ𝛼, we need 𝑥𝑖𝑛 = 𝑦𝑖𝑛 = 1 𝐴𝑛⁄ , 𝑧𝑖𝑛 = 0, mode=rotation.
▪ The functions √𝑥, 𝑙𝑛𝑥, and 𝑥𝑦 are computed with the hyperbolic CORDIC:

✓ For √𝑥, we use 𝑥𝑖𝑛 = 𝑥 + 1 (4𝐴𝑛
2)⁄ , 𝑦𝑖𝑛 = 𝑥 − 1 (4𝐴𝑛

2)⁄ , 𝑧𝑖𝑛 = 0, mode=vectoring.

✓ For 𝑙𝑛𝑥 = 2𝑡𝑎𝑛ℎ−1(𝑥 − 1 𝑥 + 1⁄), we use 𝑥𝑖𝑛 = 𝑥 + 1, 𝑦𝑖𝑛 = 𝑥 − 1, 𝑧𝑖𝑛 = 0, mode=vectoring. A product by 2 is needed.

▪ Powering: 𝑥𝑦 = 𝑒𝑦 𝑙𝑛 𝑥. We first get 𝑧𝑛 = (ln 𝑥) 2⁄ , followed by 𝑧𝑛 × 2𝑦 = 𝑦 ln 𝑥. Then, we use 𝑥𝑖𝑛 = 𝑦𝑖𝑛 = 1 𝐴𝑛⁄ , 𝑧𝑖𝑛 = 𝑦 ln 𝑥,
mode=rotation to get 𝑥𝑛 = 𝑒

𝑦 ln𝑥 = 𝑥𝑦. Argument bounds of 𝑥𝑦 ((𝑥, 𝑦) values for which 𝑥𝑦 converges): |𝑦 ln 𝑥| ≤ 𝜃𝑚𝑎𝑥(𝑀).
▪ The parameter 𝑀 controls the range of convergence: [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)].

✓ [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)]: This is the bound on the domain of 𝑐𝑜𝑠/𝑠𝑖𝑛/𝑐𝑜𝑠ℎ/𝑠𝑖𝑛ℎ/𝑒𝑥 and the range of 𝑡𝑎𝑛−1, 𝑡𝑎𝑛ℎ−1.

✓ The domain of 𝑙𝑛𝑥 is bounded by (0, 𝑒𝜃𝑚𝑎𝑥(𝑀)×2].

✓ The domain of √𝑥 is bounded by (0,
1

4𝐴𝑛
2 (
1+𝑡𝑎𝑛ℎ(𝜃𝑚𝑎𝑥)

1−𝑡𝑎𝑛ℎ(𝜃𝑚𝑎𝑥)
)].

▪ As 𝑀 increases, the argument bounds of 𝑐𝑜𝑠ℎ, 𝑠𝑖𝑛ℎ, 𝑒𝑥, 𝑡𝑎𝑛ℎ−1, √𝑥, 𝑙𝑛𝑥 and 𝑥𝑦 are greatly enlarged.

ITERATIVE ARCHITECTURE (BASIC CORDIC)
▪ The architecture is such that the inputs and outputs have an identical bit width. We can reach an optimal number of iterations

by noticing the iteration at which 𝑖 = 𝑇𝑎𝑛−1(2−𝑖) is equal to zero due to for a particular fixed-point representation.

𝑛: input/output bit width

 𝑛𝑔: additional guard bits

 𝑛𝑟: 𝑛𝑟 = 𝑛𝑔 + 𝑛 : bit width of the internal registers and operators
 𝑁: # of iterations (𝑖 = 0,1,… ,𝑁 − 1 for circular CORDIC, 𝑖 = 1,… , 𝑁 for linear/hyperbolic CORDIC)

▪ 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 may require more bits than the final values. A common rule of thumb is “If 𝑛 bits is the desired output precision, the

internal registers should have ⌈log2 n⌉ additional guard bits at the LSB position”. A more accurate procedure is to perform

software simulation for a given number of iterations and find out the number of bits required for proper representation of
the 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 quantities.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

18 Instructor: Daniel Llamocca

Circular CORDIC
▪ The figure below depicts the architecture that implements the circular CORDIC equations in an iterative fashion. The LUT

(look-up table) stores the sets of elementary angles 𝑖 = 𝑇𝑎𝑛−1(2−𝑖). The process begins when a start signal is asserted.

After 𝑁 clock cycles, the result is obtained in the registers X, Y and Z, and a new process can be started.

▪ The state machine controls the load of the registers, the data that passes onto the multiplexers, the add/subtract decision
for the adder/subtractors, and the count given to the barrel shifters and LUT.

Hyperbolic CORDIC

▪ Here the LUT holds the 𝑖 = 𝑡𝑎𝑛ℎ
−1(2−𝑖) values for 𝑖 = 1,2,… , 𝑁. The FSM is more complex as it has to account for the

repeated iterations. After 𝑁 − 1 + 𝑣 (𝑣: # of repeated iterations) clock cycles, the result is obtained in the registers X, Y and

Z, and a new process can be started.

0 1 1 0

nr

0

Xin

nr

0

Yin

E E

2-i

s_xyz

E

+/-

i

data_X data_Y

X Y

di

next_X next_Y

X_out Y_out

0 1

Zin

E

data_Z

Z

next_Z

Z_out

n

Tan-1(2-i)

i

e_i

LUT

di

FSM
Y

Z

s mode

done

di

s
_
x
y
z

E i

+/- +/-

E E

s_xyz

0 1 1 0

nr

0

Xin

nr

0

Yin

2-i

s_xyz

+/-

i

data_X data_Y

X Y

di

next_X next_Y

X_out Y_out

0 1

Zin

data_Z

Z

next_Z

Z_out

n

Tanh-1(2-i)

i

e_i

LUT

di

FSM
Y

Z

s mode

di

s
_
x
y
z

E i

+/- +/-

X

E E
E

E
E E

s_xyz

done

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

19 Instructor: Daniel Llamocca

Linear CORDIC
▪ Here the LUT holds the 𝑖 = 2

−𝑖 values with 𝑖 = 1,2, … , 𝑁. After 𝑁 − 1 clock cycles, the result is obtained in the registers X,

Y and Z, and a new process can be started. Note that we do not need an adder for 𝑥𝑖.

▪ Note that these architectures do not specify the numerical format we are using. We are free to use any format we desire

(e.g.: fixed point, dual fixed point, floating point). The adders, barrel shifters, and LUT will change depending on the desired
format. If an arithmetic unit requires more than one cycle to process its date, the FSM needs to account for this.

1 0

nr

ng
0

n

Xin

nr

ng
0

n

Yin

2-i

s_yz

i

data_X data_Y

X Y

di

next_X

next_Y

n

X_out Y_out

0 1

n

Zin

data_Z

Z

next_Z

Z_out

n

2-i

i

e_i

LUT

di

FSM
Y

Z

s mode

done

di

s
_
y
z

E i

n n

+/- +/-

X

E E
E

E
E E

s_yz

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

20 Instructor: Daniel Llamocca

▪ Example: FX Circular CORDIC with [16 14]
𝑛𝑔 = 4 additional guard bits.

0 1 1 0

4
0

16

Xin

4
0

16

Yin

E E

2-i

s_xyz

E

+/-

i

data_X data_Y

X Y

di

next_X next_Y

Xout Yout

0 1

16

Zin

E

data_Z

Z

next_Z

Zout

16

Tan-1(2-i)

i

e_i

LUT

di

CTRL
Y

Z

s mode

done

di

s
_
x
y
z

E i

+/- +/-

E E

16 16 16

2020

16

20 20

2020 20 20

16

20 20

s_xyz

FSM

Q

counter

0 to 15

E

sclr z

E
i

sc
lr
i

s

4 i

zi

D

E

Q

s_xyz

mode

Z(15)Y(19)

1 0

di

E

CTRL

resetn=0

1

Ei, sclri 1

s

S1

S2

s_xyz 1

E 1

E 1

0

1

zi Ei 1

Ei, sclri 1

FSM

1

done 1

s

S3

0

0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

21 Instructor: Daniel Llamocca

LUT (LOOK UP TABLE) APPROACH
▪ In computer architecture, whenever a function is to be evaluated, we usually implement the algorithm that computes that

function on hardware (e.g. 𝑠𝑞𝑟𝑡, 𝑙𝑛, 𝑒𝑥𝑝). We can always take advantage of the specific properties of the algorithm to optimize

both speed and resource utilization.
▪ Another option is not to compute the function values, but rather to store the values themselves in a LUT (ROM-like

architecture). In this case, the value is taken directly from the memory rather than computed. For certain scenarios and
under certain constraints, this idea can lead to more efficient architectures (both in speed and resource consumption).

▪ In a LUT, the LUT contents are hardwired. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding one
bit. It can also be seen as a multiplexor with fixed inputs. A 4-to-1 LUT can implement any 4-input logic function.

LARGER LUTS
▪ 𝑁𝐼 − 𝑡𝑜 − 𝑁𝑂 LUT: 𝑁𝐼 input bits, 𝑁𝑂 output bits. This circuit can be thought of as a ROM with 2𝑁𝐼 addresses, each address

holding 𝑁𝑂 bits.

▪ A larger LUT can be built by building a circuit that allows for more LUT positions.
▪ Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as shown in the figure. We can build a
𝑁𝐼 − 𝑡𝑜 − 1 LUT with this method.

▪ We can build a 𝑁𝐼 − 𝑡𝑜 − 𝑁𝑂 LUT using 𝑁𝑂 𝑁𝐼 − 𝑡𝑜 − 1 LUTs.

▪ You can implement any function using any desired format (e.g.: integer, fixed-point, dual fixed-point, floating point):
𝑦 = 𝑓(𝑥), where 𝑦 is represented with 𝑁𝑂 bits, and 𝑥 with 𝑁𝐼 bits.

▪ The amount of resources increases linearly with the number of output bits (NO). However, the amount of resources grow

exponentially with the number of input bits (NO). Thus, this approach is only efficient for small input data sizes (≤ 12 in

modern FPGAs).

OLUT

ILUT

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)

LUT
4 to 1

ILUT(3)

ILUT(2)

ILUT(1)

ILUT(0)

OLUT ILUT
4 OLUT

4-to-1

Look-up Table

address

(Read-only memory

with 16 positions)

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)

6

4 4 4 4

2
 M

S
B

s

4 LSBs

LUT5-to-1

LUT6-to-1

LUT
6 to 1

LUT
6 to 1

LUT
6 to 1

6

6

6

6

b0

b4

b5

b5 b1 b0

6

LUT 6-to-6

6 bits

6
4
 w

o
rd

s
 o

f
6
 b

it
s

LUT 6-to-6

LU
T

4

LU
T

4

LU
T

4

LU
T

4

MUX MUX

MUX

...

...

...

I
L
U
T

LI(4)

LI(5)

LI(3..0)

c
o
lu

m
n
 5

c
o
lu

m
n
 1

c
o
lu

m
n
 0 66

OLUT(i)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

22 Instructor: Daniel Llamocca

DISTRIBUTED ARITHMETIC
▪ This is a useful technique to implement inner product when one of the vectors is constant:

𝑦 = ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘=0

▪ If the coefficients ℎ[𝑘] are known a priori, then the partial product term ℎ[𝑘]𝑥[𝑘] becomes a multiplication with a constant.

The Distributed Arithmetic Technique takes advantage of this fact:

𝑦 = ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘=0

= ℎ[0]𝑥[0] + ℎ[1]𝑥[1] + ℎ[2]𝑥[2] +⋯+ ℎ[𝑁 − 1]𝑥[𝑁 − 1]

DISTRIBUTED ARITHMETIC – UNSIGNED INTEGER NUMBERS
▪ Each 𝑥[𝑘] value is an unsigned number with 𝐵 bits: 𝑥[𝑘] = 𝑥𝐵−1[𝑘]𝑥𝐵−1[𝑘] … 𝑥0[𝑘]

𝑥[𝑘] = ∑𝑥𝑏[𝑘] × 2
𝑏

𝐵−1

𝑏=0

, 𝑥𝑏[𝑘] ∈ {0,1}

where 𝑥𝑏[𝑘] denotes the bth bit of 𝑥[𝑘] (with 𝐵 bits). Then:

𝑦 = ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘=0

= ∑ (ℎ[𝑘]∑ 𝑥𝑏[𝑘] × 2
𝑏

𝐵−1

𝑏=0

)

𝑁−1

𝑘=0

𝑦 = ℎ[0](𝑥𝐵−1[0]2

𝐵−1 + 𝑥𝐵−2[0]2
𝐵−2 +⋯+ 𝑥0[0]2

0) +
 ℎ[1](𝑥𝐵−1[1]2

𝐵−1 + 𝑥𝐵−2[1]2
𝐵−2 +⋯+ 𝑥0[1]2

0) +
 … +
 ℎ[𝑁 − 1](𝑥𝐵−1[𝑁 − 1]2

𝐵−1 + 𝑥𝐵−2[𝑁 − 1]2
𝐵−2 +⋯+ 𝑥0[𝑁 − 1]2

0) +

▪ The summation can be rewritten as follows:

𝑦 = (ℎ[0]𝑥𝐵−1[0] + ℎ[1]𝑥𝐵−1[1] +⋯+ ℎ[𝑁 − 1]𝑥𝐵−1[𝑁 − 1]) × 2
𝐵−1 +

 (ℎ[0]𝑥𝐵−2[0] + ℎ[1]𝑥𝐵−2[1] +⋯+ ℎ[𝑁 − 1]𝑥𝐵−2[𝑁 − 1]) × 2
𝐵−2 +

 … +
 (ℎ[0]𝑥0[0] + ℎ[1]𝑥0[1] +⋯+ ℎ[𝑁 − 1]𝑥0[𝑁 − 1]) × 2

0

𝑦 = ∑(2𝑏 × ∑ ℎ[𝑘]𝑥𝑏[𝑘]

𝑁−1

𝑘=0

) =

𝐵−1

𝑏=0

∑(2𝑏 × 𝑓(ℎ⃗ , 𝑥 𝑏))

𝐵−1

𝑏=0

𝑓(ℎ⃗ , 𝑥 𝑏) = ∑ ℎ[𝑘]𝑥𝑏[𝑘]

𝑁−1

𝑘=0

, ℎ⃗ = [ℎ[0] ℎ[1]…ℎ[𝑁 − 1]], 𝑥 𝑏 = [𝑥𝑏[0] 𝑥𝑏[1]… 𝑥𝑏[𝑁 − 1]]

▪ Preferred implementation of 𝑓(ℎ⃗ , 𝑥 𝑏): A 2𝑁-word LUT preprogrammed to accept

an 𝑁-bit input vector 𝑥 𝑏 and output 𝑓(ℎ⃗ , 𝑥 𝑏).

▪ To get 𝑦, each 𝑓(ℎ⃗ , 𝑥 𝑏) is weighted by 2𝑏 and all the resulting values are added

up.

DISTRIBUTED ARITHMETIC – SIGNED INTEGER NUMBERS
▪ Each 𝑥[𝑘] value is an signed number with 𝐵 + 1 bits: 𝑥[𝑘] = 𝑥𝐵[𝑘]𝑥𝐵−1[𝑘]𝑥𝐵−1[𝑘]… 𝑥0[𝑘]

𝑥[𝑘] = −2𝐵𝑥𝐵[𝑘] + ∑𝑥𝑏[𝑘] × 2
𝑏

𝐵−1

𝑏=0

, 𝑥𝑏[𝑘] ∈ {0,1}

where 𝑥𝑏[𝑘] denotes the bth bit of 𝑥[𝑘] (with 𝐵 + 1 bits). Then:

𝑦 = ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘=0

= ∑ (ℎ[𝑘] × (−2𝐵𝑥𝐵[𝑘] +∑ 𝑥𝑏[𝑘] × 2
𝑏

𝐵−1

𝑏=0

))

𝑁−1

𝑘=0

Using a similar procedure as in the unsigned case, the inner product can be rewritten as:

𝑦 = −2𝐵 × ∑ ℎ[𝑘]𝑥𝐵[𝑘]

𝑁−1

𝑘=0

+∑(2𝑏 × ∑ ℎ[𝑘]𝑥𝑏[𝑘]

𝑁−1

𝑘=0

) =

𝐵−1

𝑏=0

−2𝐵 × 𝑓(ℎ⃗ , 𝑥 𝐵) +∑ (2𝑏 × 𝑓(ℎ⃗ , 𝑥 𝑏))

𝐵−1

𝑏=0

𝑓(ℎ⃗ , 𝑥 𝑏) = ∑ ℎ[𝑘]𝑥𝑏[𝑘]

𝑁−1

𝑘=0

, ℎ⃗ = [ℎ[0] ℎ[1]…ℎ[𝑁 − 1]], 𝑥 𝑏 = [𝑥𝑏[0] 𝑥𝑏[1]… 𝑥𝑏[𝑁 − 1]]

▪ Preferred implementation of 𝑓(ℎ⃗ , 𝑥 𝑏): A 2𝑁-word LUT preprogrammed to accept an 𝑁-bit input vector 𝑥 𝑏 and output 𝑓(ℎ⃗ , 𝑥 𝑏).

To get 𝑦, each 𝑓(ℎ⃗ , 𝑥 𝑏) is weighted by 2𝑏 and all of the resulting values are added up. Note that when 𝑏 = 𝐵, we change

the sign of the operand. Alternatively, we can modify the LUT for 𝑏 = 𝐵, so that it outputs −𝑓(ℎ⃗ , 𝑥 𝐵). To get 𝑦, each 𝑓(ℎ⃗ , 𝑥 𝑏)

is weighted by 2𝑏 and all of the resulting values are added up.

LUT
N-to-NO

N NO

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

23 Instructor: Daniel Llamocca

HARDWARE IMPLEMENTATION

i) Iterative Implementation: We make use of a shift-
adder as shown in the figure.
- The vector 𝑥 𝑏 , 𝑏 = 0,1,…𝐵 is fed into the 2𝑁-

word LUT at each clock cycle.
- Instead of shifting each intermediate output

value 𝑓(ℎ⃗ , 𝑥 𝑏) by 𝑏 bits (which demands an

expensive barrel shifter), it is more appropiate
to shift the accumulator content itself in each
iteration one bit to the right.

- The adder unit includes a add/sub control so

that when 𝑏 = 𝐵, it will subtract the 𝑓(ℎ⃗ , 𝑥 𝐵)

from the current result.
- This shift-adder implementation requires the

use of 𝑁 shift registers of 𝐵 + 1 length.

- Notice that for 𝐵 = 1, we have: 𝑓(ℎ⃗ , 𝑥 0) × 2
−1 − 𝑓(ℎ⃗ , 𝑥 1). For 𝐵 = 2, we have 𝑓(ℎ⃗ , 𝑥 0) × 2

−2 + 𝑓(ℎ⃗ , 𝑥 1) × 2
−1 − 𝑓(ℎ⃗ , 𝑥 2).

For 𝐵 = 2, we adjust the result at the end by multiplying everything by 22: 𝑓(ℎ⃗ , 𝑥 0) + 𝑓(ℎ⃗ , 𝑥 1) × 2
1 − 𝑓(ℎ⃗ , 𝑥 2) × 2

2. This

requires no extra hardware.
- A simpler option is to input the vector 𝑥 𝑏 starting from 𝑏 = 𝐵, 𝐵 − 1,… , 0.

ii) Fully parallel implementation: We use an array of 2𝑁

word LUTs as shown in the figure.
- There are no shift registers here.
- Each of the vectors 𝑥 𝑏 is fed to a 2𝑁-word LUT. As a

result, we use 𝐵 + 1 2𝑁-word LUTs.

- The output of each 2𝑁-word LUT is multiplied by its

correspondent 2𝑏.

- To account for the negative sign in 𝑓(ℎ⃗ , 𝑥 𝐵), we

multiply it by −2𝐵. Another option is to modify the LUT

so that when 𝑏 = 𝐵 it outputs − 𝑓(ℎ⃗ , 𝑥 𝐵).

- All the LUT outputs are weighted by 2𝑏 and added into

a final result.

MODIFIED DA IMPLEMENTATION
▪ The LUT implementation becomes prohibitively expensive when 𝑁 is large

(if N = 32 the LUT has 232 words = 4G words!!!). A solution is to divide
the inner product into inner product with 𝐿 terms, i.e. we have 𝑁 𝐿⁄ inner

products of 𝐿 terms, as follows:

𝑦 = ∑ℎ[𝑘]𝑥[𝑘]

𝐿−1

𝑘=0

+ ∑ ℎ[𝑘]𝑥[𝑘]

2𝐿−1

𝑘=𝐿

+ ∑ ℎ[𝑘]𝑥[𝑘]

3𝐿−1

𝑘=2𝐿

+⋯+ ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘=(
𝑁

𝐿
−1)𝐿

▪ Each of the 𝑁 𝐿⁄ summations is transformed to DA form, and then computed in parallel. Finally, we add up all the resulting

LN values. With this in mind, we reformulate the 2 basic implementations:

i) Iterative Implementation: Here we use 𝑁 𝐿⁄ 2𝐿-word LUTs. A vector 𝑥 𝑏 (0 ≤ 𝑏 ≤ 𝐵) is fed into the LUT at each clock cycle.

All LUTs outputs are accumulated; the final result goes through a shift-adder unit. The table illustrates the resource savings.

Iterative DA implementation LUT Size Total space required

No division in filter blocks 2𝑁 words 2𝑁 words

Division into LN filter blocks 2𝐿 words 2𝐿 × (𝑁 𝐿⁄) words

As an example, consider 𝑁 = 32, 𝐿 = 4. Then the original DA uses 232 = 4𝐺 𝑤𝑜𝑟𝑑𝑠, while the Modified DA uses 24 ×
32

4
=

128 𝑤𝑜𝑟𝑑𝑠. This is a vast improvement at the expense of one extra adder tree.

ii) Fully Parallel Implementation: The output of each of the 𝑁 𝐿⁄ filter blocks is computed as in the case of Figure 6. The only

diference is that the 𝑥 𝑏 vectors are of 𝐿 bits; each of these vectors is fed into a 2𝐿-word LUT (we use 𝐵 + 1 2𝐿-word LUTs

per filter block). Finally the 𝑁 𝐿⁄ filter block outputs are added in parallel. The following table illustrates the resource savings.

LUT SPACE COMPARISONS – FULLY PARALLEL IMPLEMENTATION

Implementation LUT Size Total space required

No division in filter blocks 2𝑁 × (𝐵 + 1) words 2𝑁 × (𝐵 + 1) words

Division into 𝑁 𝐿⁄ filter blocks 2𝐿 × (𝐵 + 1) words 2𝐿 × (𝐵 + 1) × (𝑁 𝐿⁄) words

Add: b≠ B

Sub: b = Bx[0] :

x[N-1] :

x1xB x0

xB[0] ... x1[0] x0[0]

xB[N-1] x1[N-1] x0[N-1]...

x[1] : xB[1] ... x1[1] x0[1]
2

N
-word

LUT

2
-1

y

2
N
-w ord

LUT

xB

N

-2
B

2
N
-w ord

LUT

xB-1

N

2
B-1

2
N
-w ord

LUT

x1

N

2
1

2
N
-w ord

LUT

x0

N

2
0

+

y

0

L

1

L

+ 2

L

+ N/L-1

L

+ +

N

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

24 Instructor: Daniel Llamocca

Fully Parallel Modified DA Architecture

As an example, consider N = 32, L = 4, B = 11. Then the original DA uses 232 × (11 + 1) = 48𝐺 𝑤𝑜𝑟𝑑𝑠, while the Modified

DA uses words1536
4

32
11124 = . This is vast improvement.

▪ Fixed-point considerations: The

format of every stage differs from
that of the input.

▪ Applications: non-symmetric,

symmetric, anti-symmetric FIR
filters, DCT, HEVC Transform.

Iterative Modified DA Implementation.

x[0] :

x[L-1] :

x1xB x0

xB[0] ... x1[0] x0[0]

xB[L-1] x1[L-1] x0[L-1]...

x[L] :

x[2L-1] :

x1xB x0

xB[L] ... x1[L] x0[L]

xB[2L-1] x1[2L-1] x0[2L-1]...

x[N-L] :

x[N-1] :

x1xB x0

xB[3L] ... x1[3L] x0[3L]

xB[N-1] x1[N-1] x0[N-1]...

2
L
-word

LUT

2
L
-word

LUT

2
L
-word

LUT

Add: b≠ B

Sub: b = B

2
-1

y

x[0] :

x[L-1] :

x1xB x0

xB[0] ... x1[0] x0[0]

xB[L-1] x1[L-1] x0[L-1]...

x[L] :

x[2L-1] :

x1xB x0

xB[L] ... x1[L] x0[L]

xB[2L-1] x1[2L-1] x0[2L-1]...

x[N-L] :

x[N-1] :

x1xB x0

xB[3L] ... x1[3L] x0[3L]

xB[N-1] x1[N-1] x0[N-1]...

2L-w ord

LUT

-2B

L
xB

2L-w ord

LUT

20

L
x0

2L-w ord

LUT

-2B

L
xB

2L-w ord

LUT

20

L
x0

2L-w ord

LUT

-2B

L
xB

2L-w ord

LUT

20

L
x0

y

